			November 1992 Revised January 1999
SEMICONDUCTORTN			
74ABT899			
9－Bit Lat with Par	chable Tra	ansceiver ator／Check	r
General Description			－Ability to simultaneously generate and check parity
The ABT899 is a 9－bit to 9－bit parity transceiver with trans－ parent latches．The device can operate as a feed－through transceiver or it can generate／check parity from the 8 －bit data busses in either direction．			May be used in systems applications in place of the 543 and 280 May be used in system applications in place of the 657 and 373 （no need to change $T / \overline{\mathrm{R}}$ to check parity）
The ABT899 features independent latch enables for the A－ to－B direction and the B－to－A direction，a select pin for ODD／EVEN parity，and separate error signal output pins for checking parity．			■ Guaranteed output skew ■ Guaranteed multiple output switching specifications ■ Output switching specified for both 50 pF and 250 pF loads
Features			Guaranteed simultaneous switching noise level and dynamic threshold performance
－Latchable transceiver with output sink of 64 mA			■ Guaranteed latchup protection
Option to select generate parity and check or ＂feed－through＂data／parity in directions A－to－B or B－to－A			High impedance glitch free bus loading during entire power up and power down cycle
Independent latch enables for A－to－B and B－to－A directions			－Nondestructive hot insertion capability －Disable time less than enable time to avoid bus
－Select pin for ODD／EVEN parity ■ ERRA and $\overline{\text { ERRB }}$ output pins for parity checking			contention
Ordering Code：			
Order Number	Package Number	Package Description	
74ABT899CSC	M28B	28－Lead Small Outline Integrated Circuit（SOIC），MS－013，0．300＂Wide Body	
74ABT899CMSA	MSA28	28－Lead Shrink Small Outline Package（SSOP），EIAJ TYPE II，5．3mm Wide	
74ABT899CQC	V28A	28－Lead Plastic Lead Chip Carrier（PLCC），JEDEC MO－047，0．450＂Square	
Devices also available in Tape and Reel．Specify by appending suffix letter＂X＂to the ordering code．			
Connectio APAR GBD $\overline{\text { ERRB }}$ SEL LEB BPAR	n Diagrams Pin Assignment for PLCC $A_{7} A_{6} A_{5} A_{4} A_{3} A_{2} A_{1}$ 四回回回回回		

Pin Descriptions

Pin Names	Descriptions
$A_{0}-A_{7}$	A Bus Data Inputs/Data Outputs
$B_{0}-B_{7}$	B Bus Data Inputs/Data Outputs
APAR, BPAR	
ODD/EVEN	A and B Bus Parity Inputs/Outputs ODD/EVEN Parity Select, Active LOW for EVEN Parity Output Enables for A or B Bus, Active LOW GBA,$\overline{G A B}$
$\overline{\text { SEL }}$	Select Pin for Feed-Through or Generate Mode, LOW for Generate Mode
LEA, LEB	Latch Enables for A and B Latches, HIGH for Transparent Mode
$\overline{\text { ERRA, ERRB }}$	Error Signals for Checking Generated Parity with Parity In, LOW if Error Occurs

Functional Description

The ABT899 has three principal modes of operation which are outlined below. These modes apply to both the A-to-B and B -to-A directions.

- Bus $A(B)$ communicates to Bus $B(A)$, parity is generated and passed on to the $B(A)$ Bus as BPAR (APAR). If LEB (LEA) is HIGH and the Mode Select ($\overline{\mathrm{SEL}}$) is LOW, the parity generated from $B[0: 7]$ ($A[0: 7]$) can be checked and monitored by ERRB (ERRA).
- Bus $A(B)$ communicates to Bus $B(A)$ in a feed-through mode if SEL is HIGH. Parity is still generated and checked as ERRA and $\overline{E R R B}$ in the feed-through mode (can be used as an interrupt to signal a data/parity bit error to the CPU).
- Independent Latch Enables (LEA and LEB) allow other permutations of generating/checking (see Function Table below).

Function Table

Functional Block Diagram

Absolute Maximum Ratings(Note 2)
Storage Temperature
Ambient Temperature under Bias
Junction Temperature under Bias Plastic
V_{CC} Pin Potential to Ground Pin
Input Voltage (Note 3)
Input Current (Note 3)
Voltage Applied to Any Output in the Disable or Power-
Off State
in the HIGH State
Current Applied to Output
in LOW State (Max)
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
-0.5 V to +7.0 V
-0.5 V to +7.0 V
-30 mA to +5.0 mA
-0.5 V to +5.5 V
-0.5 V to V_{CC}
twice the rated $\mathrm{I}_{\mathrm{OL}}(\mathrm{mA})$

DC Latchup Source Current $\quad-500 \mathrm{~mA}$ Over Voltage Latchup (I/O)

10V

Recommended Operating Conditions

Free Air Ambient Temperature	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Supply Voltage	+4.5 V to +5.5 V
Minimum Input Edge Rate $(\Delta \mathrm{V} / \Delta \mathrm{t})$	
\quad Data Input	$50 \mathrm{mV} / \mathrm{ns}$
Enable Input	$20 \mathrm{mV} / \mathrm{ns}$

Note 2: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.
Note 3: Either voltage limit or current limit is sufficient to protect inputs.

DC Electrical Characteristics

Symbol	Parameter	Min	Typ	Max	Units	V_{cc}	Conditions
V_{IH}	Input HIGH Voltage	2.0			V		Recognized HIGH Signal
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage			0.8	V		Recognized LOW Signal
V_{CD}	Input Clamp Diode Voltage			-1.2	V	Min	$\mathrm{I}_{\mathrm{I}}=-18 \mathrm{~mA}$ (Non I/O Pins)
V_{OH}	Output HIGH Voltage	$\begin{aligned} & 2.5 \\ & 2.0 \end{aligned}$			V	Min	$\mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA},\left(\mathrm{~A}_{\mathrm{n}}, \mathrm{B}_{\mathrm{n}}\right.$, APAR, BPAR $)$ $\mathrm{I}_{\mathrm{OH}}=-32 \mathrm{~mA},\left(\mathrm{~A}_{\mathrm{n}}, \mathrm{B}_{\mathrm{n}}\right.$, APAR, BPAR $)$
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage			0.55	V	Min	$\mathrm{l}_{\mathrm{OL}}=64 \mathrm{~mA},\left(\mathrm{~A}_{\mathrm{n}}, \mathrm{B}_{\mathrm{n}}\right.$, APAR, BPAR)
$\mathrm{V}_{\text {ID }}$	Input Leakage Test	4.75			V	0.0	$\mathrm{I}_{\mathrm{ID}}=1.9 \mu \mathrm{~A}, \text { (Non-I/O Pins) }$ All Other Pins Grounded
$\overline{I_{\mathrm{H}}}$	Input HIGH Current			5	$\mu \mathrm{A}$	Max	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{IN}}=2.7 \mathrm{~V}(\text { Non-I/O Pins) }(\text { Note } 4) \\ & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}}(\text { Non-I/O Pins }) \end{aligned}$
$\mathrm{I}_{\mathrm{BVI}}$	Input HIGH Current Breakdown Test			7	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {IN }}=7.0 \mathrm{~V}$ (Non-I/O Pins)
$\mathrm{I}_{\text {BVIT }}$	Input HIGH Current Breakdown Test (I/O)			100	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {IN }}=5.5 \mathrm{~V}\left(\mathrm{~A}_{\mathrm{n}}, \mathrm{B}_{\mathrm{n}}\right.$, APAR, BPAR $)$
ILL	Input LOW Current			-5	$\mu \mathrm{A}$	Max	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=0.5 \mathrm{~V} \text { (Non-I/O Pins) (Note 4) } \\ & \mathrm{V}_{\mathrm{IN}}=0.0 \mathrm{~V} \text { (Non-//O Pins) } \end{aligned}$
$\overline{\mathrm{I}_{\mathrm{H}}+\mathrm{I}_{\text {OzH }}}$	Output Leakage Current			50	$\mu \mathrm{A}$	0V-5.5V	$\begin{aligned} & \mathrm{V}_{\mathrm{OUT}}=2.7 \mathrm{~V}\left(\mathrm{~A}_{\mathrm{n}}, \mathrm{~B}_{\mathrm{n}}\right) ; \\ & \overline{\mathrm{GAB}} \text { and } \overline{\mathrm{GBA}}=2.0 \mathrm{~V} \end{aligned}$
$I_{\text {IL }}+\mathrm{I}_{\text {OZL }}$	Output Leakage Current			-50	$\mu \mathrm{A}$	0V-5.5V	$\begin{aligned} & \mathrm{V}_{\mathrm{OUT}}=0.5 \mathrm{~V}\left(\mathrm{~A}_{\mathrm{n}}, \mathrm{~B}_{\mathrm{n}}\right) \\ & \overline{\mathrm{GAB}} \text { and } \overline{\mathrm{GBA}}=2.0 \mathrm{~V} \end{aligned}$
Ios	Output Short-Circuit Current	-100		-275	mA	Max	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}\left(\mathrm{~A}_{\mathrm{n}}, \mathrm{B}_{\mathrm{n}}\right.$, APAR, BPAR $)$
$\mathrm{I}_{\text {CEX }}$	Output HIGH Leakage Current			50	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {CC }}\left(\mathrm{A}_{\mathrm{n}}, \mathrm{B}_{\mathrm{n}}\right.$, APAR, BPAR $)$
$\mathrm{I}_{\text {zz }}$	Bus Drainage Test			100	$\mu \mathrm{A}$	0.0V	$\mathrm{V}_{\text {OUT }}=5.5 \mathrm{~V}\left(\mathrm{~A}_{\mathrm{n}}, \mathrm{B}_{\mathrm{n}}\right.$, APAR, BPAR); All Others GND
$\stackrel{I_{\text {CCH }}}{ }$	Power Supply Current			250	$\mu \mathrm{A}$	Max	All Outputs HIGH
$\mathrm{I}_{\text {CCL }}$	Power Supply Current			34	mA	Max	All Outputs LOW, ERRA/B = HIGH (Note 5)
$\mathrm{I}_{\text {CCz }}$	Power Supply Current			250	$\mu \mathrm{A}$	Max	Outputs 3-STATE All Others at V_{CC} or GND
${ }^{\text {CCT }}$	Additional $\mathrm{ICC}^{\text {/lnput }}$			2.5	mA	Max	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\text {CC }}-2.1 \mathrm{~V}$ All Others at $\mathrm{V}_{\text {cC }}$ or GND
${ }_{\text {CCD }}$	Dynamic I ICc: No Load (Note 4)			0.4	$\mathrm{mA} / \mathrm{MHz}$	Max	Outputs Open $\overline{\mathrm{GAB}}$ or $\overline{\mathrm{GBA}}=\mathrm{GND}, \mathrm{LE}=\mathrm{HIGH}$ Non-I/O = GND or VCC One bit toggling, 50% duty cycle
Note 4: Guaranteed, but not tested. Note 5: Add 3.75 mA for each ERR LOW.							

DC Electrical Characteristics

(PLCC package)

Symbol	Parameter	Min	Typ	Max	Units	V_{cc}	$\begin{gathered} \text { Conditions } \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$
$\mathrm{V}_{\text {OLP }}$	Quiet Output Maximum Dynamic $\mathrm{V}_{\text {OL }}$		0.8	1.1	V	5.0	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (Note 6)
$\mathrm{V}_{\text {OLV }}$	Quiet Output Minimum Dynamic $\mathrm{V}_{\text {OL }}$	-1.3	-0.8		V	5.0	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (Note 6)
$\mathrm{V}_{\text {OHV }}$	Minimum HIGH Level Dynamic Output Voltage	2.5	3.0		V	5.0	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (Note 8)
$\mathrm{V}_{\text {HD }}$	Minimum HIGH Level Dynamic Input Voltage	2.2	1.8		V	5.0	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (Note 7)
$\mathrm{V}_{\text {ILD }}$	Maximum LOW Level Dynamic Input Voltage		0.8	0.5	V	5.0	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (Note 7)

Note 6: Max number of outputs defined as (n). $\mathrm{n}-1$ data inputs are driven OV to 3 V . One output at LOW. Guaranteed, but not tested.
Note 7: Max number of data inputs (n) switching. $\mathrm{n}-1$ inputs switching 0 V to 3 V . Input-under-test switching: 3 V to threshold ($\mathrm{V}_{\text {ILD }}$), 0 V to threshold ($\mathrm{V}_{\text {IHD }}$). Guaranteed, but not tested.
Note 8: Max number of outputs defined as (n). $\mathrm{n}-1$ data inputs are driven 0 V to 3 V . One output HIGH. Guaranteed, but not tested.

AC Electrical Characteristics

Symbol	Parameter	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}-5.5 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		Units
		Min	Typ	Max	Min	Max	
${ }_{\text {tpLH }}$	Propagation Delay	1.5	3.0	4.8	1.5	4.8	ns
$\mathrm{t}_{\text {PHL }}$	A_{n}, to B_{n}	1.5	3.5	4.8	1.5	4.8	
${ }_{\text {tPLH }}$	Propagation Delay	2.5	5.9	9.2	2.5	9.2	ns
$\mathrm{t}_{\text {PHL }}$	A_{n}, B_{n} to BPAR, APAR	2.5	5.8	9.2	2.5	9.2	
${ }_{\text {tPLH }}$	Propagation Delay	2.5	5.4	8.5	2.5	8.5	ns
$\mathrm{t}_{\text {PHL }}$	A_{n}, B_{n} to ERRA, $\overline{\text { ERRB }}$	2.5	5.4	8.5	2.5	8.5	
${ }_{\text {tPLH }}$	Propagation Delay	1.5	3.7	6.0	1.5	6.0	ns
$\mathrm{t}_{\text {PHL }}$	APAR, BPAR to $\overline{\text { ERRA, }}$, ERRB	1.5	3.7	6.0	1.5	6.0	
${ }_{\text {tPLH }}$	Propagation Delay	2.0	4.4	6.9	2.0	6.9	ns
$\mathrm{t}_{\text {PHL }}$	ODD/EVEN to APAR, BPAR	2.0	4.4	6.9	2.0	6.9	
${ }_{\text {tPLH }}$	Propagation Delay	1.8	4.0	6.0	1.8	6.0	ns
$\mathrm{t}_{\text {PHL }}$	ODD/EVEN to ERRA, ERRB	1.8	4.0	6.0	1.8	6.0	
${ }_{\text {tPLH }}$	Propagation Delay	1.5	3.8	6.0	1.5	6.0	ns
$\mathrm{t}_{\text {PHL }}$	SEL to APAR, BPAR	1.5	3.8	6.0	1.5	6.0	
$\mathrm{t}_{\text {PL }}$	Propagation Delay	1.5	3.2	4.6	1.5	4.6	ns
$\mathrm{t}_{\text {PHL }}$	LEA, LEB to $\mathrm{B}_{\mathrm{n}}, \mathrm{A}_{\mathrm{n}}$	1.5	3.2	4.6	1.5	4.6	
${ }^{\text {t PLH }}$	Propagation Delay	2.5	5.9	8.8	2.5	8.8	
$\mathrm{t}_{\text {PHL }}$	LEA, LEB to BPAR, APAR Generate Mode	2.5	5.7	8.8	2.5	8.8	ns
${ }_{\text {tPLH }}$	Propagation Delay	1.5	3.6	5.1	1.5	5.1	ns
$\mathrm{t}_{\text {PHL }}$	LEA, LEB to BPAR, APAR, Feed Thru Mode	1.5	3.6	5.1	1.5	5.1	
${ }_{\text {tPLH }}$	Propagation Delay	1.6	5.4	8.4	1.6	8.4	ns
$\mathrm{t}_{\text {PHL }}$	LEA, LEB to ERRA, ERRB	1.6	5.4	8.4	1.6	8.4	
${ }_{\text {t }}{ }_{\text {PZH }}$	Output Enable Time	1.5	3.6	6.0	1.5	6.0	ns
$t_{\text {PZL }}$	$\overline{\mathrm{GBA}}$ or $\overline{\mathrm{GAB}}$ to A_{n}, APAR or B_{n}, BPAR	1.5	3.4	6.0	1.5	6.0	
$\mathrm{t}_{\text {PHZ }}$	Output Disable Time	1.0	4.0	6.0	1.0	6.0	ns
tplz	$\overline{\text { GBA }}$ or $\overline{\text { GAB }}$ to A_{n}, APAR or B_{n}, BPAR	1.0	3.3	6.0	1.0	6.0	
tPLHtPHL	Propagation Delay	1.5	3.3	5.4	1.5	5.4	ns
	APAR to BPAR, BPAR to APAR	1.5	3.8	5.4	1.5	5.4	

\square

AC Operating Requirements

Symbol	Parameter	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}-5.5 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		Units
		Min	Max	Min	Max	
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$	Setup Time, HIGH or LOW An, APAR to LEA or B_{n}, BPAR to LEB	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$		$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$		ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{H}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{H}}(\mathrm{~L}) \end{aligned}$	Hold Time, HIGH or LOW An, APAR to LEA or B_{n}, BPAR to LEB	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$		$\begin{aligned} & \hline 1.0 \\ & 1.0 \end{aligned}$		ns
$t_{w}(\mathrm{H})$	Pulse Width, HIGH LEA or LEB	3.0		3.0		ns

Skew (PLCC package) (Note 2)				
Symbol	Parameter	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}-5.5 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$ 9 Outputs Switching (Note 19)	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}-5.5 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=250 \mathrm{pF} \end{gathered}$ 9 Outputs Switching (Note 20)	Units
		Max	Max	
toshl (Note 21)	Pin to Pin Skew HL Transitions	1.0	2.0	ns
$\mathrm{t}_{\mathrm{OSLH}}$ (Note 21)	Pin to Pin Skew LH Transitions	1.1	2.1	ns
$t_{P S}$ (Note 22)	$\begin{aligned} & \text { Duty Cycle } \\ & \text { LH-HL Skew } \end{aligned}$	2.0	3.5	ns
$\mathrm{t}_{\mathrm{OST}}$ (Note 21)	Pin to Pin Skew LH/HL Transitions	2.0	3.5	ns
$t_{P V}$ (Note 23)	Device to Device Skew LH/HL Transitions	3.0	4.0	ns
Note 19: This specification is guaranteed but not tested. The limits apply to propagation delays for all paths described switching in phase (i.e., all LOW-toHIGH, HIGH-to-LOW, etc.). Note 20: This specification is guaranteed but not tested. The limits represent propagation delays with 250 pF load capacitors in place of the 50 pF load capacitors in the standard AC load. Note 21: Skew is defined as the absolute value of the difference between the actual propagation delays for any two separate outputs of the same device. The specification applies to any outputs switching HIGH to LOW ($\mathrm{t}_{\mathrm{OSHL}}$), LOW to HIGH ($\mathrm{t}_{\mathrm{OSLH}}$), or any combination switching LOW to HIGH and/or HIGH to LOW (tost). This specification is guaranteed but not tested. Skew applies to propagation delays individually; i.e., A_{n} to B_{n} separate from LEA to A_{n}. Note 22: This describes the difference between the delay of the LOW-to-HIGH and the HIGH-to-LOW transition on the same pin. It is measured across all the outputs (drivers) on the same chip, the worst (largest delta) number is the guaranteed specification. This specification is guaranteed but not tested. Note 23: Propagation delay variation for a given set of conditions (i.e., temperature and V_{CC}) from device to device. This specification is guaranteed but not tested.				

Capacitance

Symbol	Parameter	Typ	Units	Conditions $\mathbf{T}_{\mathbf{A}}=\mathbf{2 5}{ }^{\circ} \mathbf{C}$
C_{IN}	Input Pin Capacitance	5.0	pF	$\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$
$\mathrm{C}_{/ / \mathrm{O}}$ (Note 24)	Output Capacitance	11.0	pF	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$

[^0]
74ABT899

A_{n}, APAR $\rightarrow \mathrm{B}_{\mathrm{n}}$, BPAR
$\left(B_{n}\right.$, BPAR $\rightarrow A_{n}$, APAR $)$
FIGURE 1.

$\mathrm{A}_{\mathrm{n}} \rightarrow$ BPAR
($\mathrm{B}_{\mathrm{n}} \rightarrow$ APAR)
FIGURE 2.

$$
\mathrm{A}_{\mathrm{n}} \rightarrow \overline{\mathrm{ERRA}}
$$

$$
\left(\mathrm{B}_{\mathrm{n}} \rightarrow \overline{\mathrm{ERRB}}\right)
$$

FIGURE 3.

[^1]O/E \rightarrow ERRB
FIGURE 4.

AC Loading
FIGURE 15. Standard AC Test Load

FIGURE 16.

Input Pulse Requirements

Amplitude	Rep. Rate	$\mathbf{t}_{\mathbf{w}}$	$\mathbf{t}_{\mathbf{r}}$	$\mathbf{t}_{\mathbf{f}}$
3.0 V	1 MHz	500 ns	2.5 ns	2.5 ns

FIGURE 17. Test Input Signal Requirements

AC Waveforms

FIGURE 18. Propagation Delay Waveforms for Inverting and Non-Inverting Functions

FIGURE 19. Propagation Delay, Pulse Width Waveforms

FIGURE 20. 3-STATE Output HIGH and LOW Enable and Disable Times

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

28-Lead Plastic Lead Chip Carrier (PLCC), JEDEC MO-047, 0.450" Square Package Number V28A

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
www.fairchildsemi.com
[^2]
[^0]: Note 24: $\mathrm{C}_{/ / \mathrm{O}}$ is measured at frequency, $\mathrm{f}=1 \mathrm{MHz}$, per MIL-STD-883B, Method 3012.

[^1]: $\mathrm{O} / \mathrm{E} \rightarrow \overline{\mathrm{ERRA}}$

[^2]: Fairchild does not assume any responsibility for use of ary circuitry described, no circuit patert licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

